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Abstract— We consider lossy compression of a binary symmet-
ric source by means of a low-density generator-matrix code.We
derive two lower bounds on the rate distortion function which
are valid for any low-density generator-matrix code with a given
node degree distribution L(x) on the set of generators and for
any encoding algorithm. These bounds show that, due to the
sparseness of the code, the performance is strictly boundedaway
from the Shannon rate-distortion function. In this sense, our
bounds represent a natural generalization of Gallager’s bound on
the maximum rate at which low-density parity-check codes can
be used for reliable transmission. Our bounds are similar inspirit
to the technique recently developed by Dimakis, Wainwright, and
Ramchandran, but they apply to individual codes.

I. I NTRODUCTION

We consider lossy compression of a binary symmetric
source (BSS) using a low-density generator-matrix (LDGM)
code as shown in Figure 1. More precisely, letS ∈ F

m
2

represent the binary source of lengthm. We have S =
{S1, S2, . . . , Sm}, where the{Si}

m
i=1 are iid random variables

with P{Si = 1} = 1
2 , i ∈ [m]. Let S denote the set of all

source words.
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Fig. 1. The Tanner graph corresponding to a simple LDGM code used for
lossy compression of a BSS. We havem = 7, R = 4

7
, andL(x) = x3.

Given a source words ∈ S, we compress it by mapping it to
one of the2mR index wordsw ∈ W = F

mR
2 , whereR is the

rate, R ∈ [0, 1]. We denote this encoding map byf : s 7→ W
(the map can be random). The reconstruction is done via an
LDGM code determined by a sparse binarymR×m generator
matrixG. Let ŝ denote the reconstructed word associated tow.
We havês = wG. We denote this decoding map byg : w 7→ ŝ.
Let Ŝ denote the code,̂S = {ŝ(1), . . . , ŝ(2mR)}, ŝ(i) ∈ F

m
2 .

The codewords are not necessarily distinct.
We call the components of the index wordw =

{w1, . . . , wmR} thegenerators and the associated nodes in the
factor graph representing the LDGM code thegenerator nodes.
We assume that these generators nodes have a normalized

degree distributionL(x) =
∑

i Lix
i. This means thatLi

represents the fraction (out ofmR) of generator nodes of
degreei.

We are interested in the trade-off between rate and distortion
which is achievable in this setting. Letd(·, ·) denote the
Hamming distortion function,d : F

m
2 ×F

m
2 → N. The average

distortion is then given by

1

m
E[d(S, g(f(S))].

We are interested in the minimum of this average distortion,
where the minimum is taken over all LDGM codes of a given
rate, generator degree distributionL(x), and length, as well
as over all encoding functions.

II. REVIEW

Given the success of sparse graph codes applied to the
channel coding problem, it is not surprising that there is also
interest in the use of sparse graph codes for the source coding
problem. Martinian and Yedidia [1] were probably the first to
work on lossy compression using sparse graph codes. They
considered a memoryless ternary source with erasures and
demonstrated a duality result between compression of this
source and the transmission problem over a binary erasure
channel (both using iterative encoding/decoding). Mezard,
Zecchina, and Ciliberti [2] considered the lossy compression
of the BSS using LDGM codes with a Poisson distribu-
tion on the generators. They derived the one-step replica
symmetry-breaking (1RSB) solution and the average rate-
distortion function. According to this analysis, this ensemble
approaches the Shannon rate-distortion curve exponentially
fast in the average degree. They observed that the iterative
interpretation associated to the 1RSB analysis gives rise to
an algorithm, which they calledsurvey propagation. In [3]
the same authors implement an encoder that utilizes a Tanner
graph with random non-linear functions at the check nodes
and asurvey propagation based decimation algorithm for data
compression of the BSS. In [4], Wainwright and Maneva also
considered the lossy compression of a BSS using an LDGM
code with a given degree distribution. They showed how
survey propagation can be interpreted as belief propagation
algorithm (as did Braunstein and Zecchina [5]) on an enlarged
set of assignments and demonstrated that the survey propa-
gation algorithm is a practical and efficient encoding scheme.
Recently, Filler and Friedrich [6] demonstrated experimentally
that even standard belief propagation based decimation algo-
rithms using optimized degree distributions for LDGM codes
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and a proper initialization of the messages can achieve a rate-
distortion trade-off very close to the Shannon bound. Martinian
and Wainwright [7], [8], [9] constructedcompound LDPC
and LDGM code ensembles and gave rigorousupper bounds
on their distortion performance. A standard LDGM code
ensemble is a special case of their construction, hence theyalso
provideupper bounds on the rate-distortion function of LDGM
ensembles. By using the first and second moment method
they proved that a code chosen randomly from thecompound
ensemble under optimal encoding and decoding achieves the
Shannon rate-distortion curve with high probability. Finally,
they pointed out that such constructions are useful also in
a more general context (e.g., the Wyner-Ziv or the Gelfand-
Pinsker problem). Dimakis et al [10] were the first authors to
provide rigorouslower bounds on the rate-distortion function
of LDGM code ensembles.

Theorem 1 (Dimakis, Wainwright, Ramchandran [10]):
Let Ŝ be a binary code of blocklengthm and rateR chosen
uniformly at random from an ensemble of left Poisson LDGM
Codes with check-node degreer. Suppose that we perform
MAP decoding. With high probability the rate-distortion pair
(R, D) achieved byŜ fulfills

R ≥
1 − h(D)

1 − e−
(1−D)r

R

> 1 − h(D).

A. Outline

In the spirit of Gallager’s information theoretic bound for
LDPC codes, we are interested in deriving lower bounds on
the rate-distortion function which are valid forany LDGM
code with a given generator node degree distributionL(x).
Our approach is very simple. Pick a parameterD, D ∈ [0, 1

2 ]
(think of this parameter as the distortion). Consider the set of
“covered” sequences

C(D) =
⋃

ŝ∈Ŝ

B(ŝ, Dm), (1)

whereB(x, i), x ∈ F
m
2 , i ∈ [m], is the Hamming ball of radius

i centered atx. In words,C(D) represents the set of all those
source sequences that are within Hamming distance at most
Dm from at least one code word.

Recall that for anys ∈ S, f(s) ∈ W represents the index
word and thatg(f(s)) denotes the reconstructed word. We have

d(s, g(f(s))) ≥

{

0, s ∈ C(D),

Dm, s ∈ F
m
2 \ C(D).

Therefore,

1

m
E[d(S, g(f(S)))]

=
1

m

∑

s∈F
m
2

2−m d(s, g(f(s))) ≥
2−m

m

∑

s∈F
m
2 \C(D)

d(s, g(f(s)))

≥ 2−mD|Fm
2 \ C(D)| ≥ D

(

1 − 2−m|C(D)|
)

. (2)

If the codewords are well spread out then we know from
Shannon’s random coding argument that for a choiceD =
h−1(1 − R), |C(D)| ≈ 2m, [11]. But the codewords of an

LDGM code are clustered since changing a single generator
symbol only changes a constant number of symbols in the
codeword. There is therefore substantial overlap of the balls.
We will show that there exists aD which is strictly larger
than the distortion corresponding to Shannon’s rate-distortion
bound so that|C(D)| is exponentially small compared to2m

regardless of the specific code. From (2) this implies that the
distortion is at leastD.

To derive the required upper bound on|C(D)| we use two
different techniques. In Section III we use a simple combina-
torial argument. In Section IV, on the other hand, we employ
a probabilistic argument based on the “test channel” which is
typically used to show the achievability of the Shannon rate-
distortion function.

Although both bounds prove that the rate-distortion function
is strictly bounded away from the Shannon rate-distortion
function for the whole range of rates and any LDGM code,
we conjecture that a stronger bound is valid. We pose our
conjecture as an open problem in Section V.

III. B OUND V IA COUNTING

Theorem 2 (Bound Via Counting): Let Ŝ be an LDGM
code with blocklengthm and with generator node degree
distributionL(x) and defineL′ = L′(1). Let

f(x) =
d

∏

i=0

(1 + xi)Li , a(x) =
d

∏

i=0

iLi
xi

1 + xi
,

R̂(x) =
1 − h( x

1+x )

1 − log f(x)
xa(x)

, D̂(x) =
x

1 + x
− a(x)R̂(x).

For R ∈ [ 1
L′ , 1] let x(R) be the unique positive solution of

R̂(x) = R. Define the curveD(R) as






1
2

(

1 − RL′
(

1 − 2
( x( 1

L′ )

1+x( 1
L′ )

−
a(x( 1

L′ ))

l

))

)

, R ∈ [0, 1
L′ ],

D̂(x(R)), R ∈ [ 1
L′ , 1].

Then, for any blocklengthm, the achievable distortion of an
LDGM code of rateR and generator degree distributionL(x)
is lower bounded byD(R).
Discussion: (i) As stated above, if we are considering a single
code of rateR then the lower bound on the distortion isD(R).
If, on the other hand we are considering a family of codes,
all with the same generator degree distributionL(x) but with
different ratesR, then it is more convenient to plot the lower
bound in a parametric form. First plot the curve(D̂(x), R̂(x))
for x ∈ [0, 1]. Then connect the point(D = 1

2 , R = 0)

to the point on the(D̂(x), R̂(x)) curve with R̂(x) = 1
L′

by a straight line. The resulting upper envelope gives the
stated lower bound for the whole range. This construction is
shown in Figure 2. (ii) Although this is difficult to glance
from the expressions, we will see in the proof that for any
bounded generator degree distributionL(x) the performance
is strictly bounded away from the Shannon rate-distortion
function. From a practical perspective however the gap to the
rate-distortion bound decreases quickly in the degree.
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Fig. 2. Construction of the bound for codes withL(x) = x2 so thatL′ = 2
(all generator nodes have degree2). The solid gray curve corresponds to the
Shannon rate-distortion curve. The black curve just above,which is partially
solid and partially dotted, corresponds to the curve(D̂(x), R̂(x)) for x ∈

[0, 1]. It starts at the point(0, 1) (which corresponds tox = 0) and ends at
(L

′
−1

2L′ = 1
4
, 1
(L′)2

= 1
4
) which corresponds tox = 1. The straight line goes

from the point(D̂(x( 1
L′ )),

1
L′ ) to the point( 1

2
, 0). Any achievable(R, D)

pair must lie in the lightly shaded region. This region is strictly bounded away
from the Shannon rate-distortion function over the whole range.

Example 1 (Generator-Regular LDGM Codes): Consider
codes with generator degree equal tol and an arbitrary
degree distribution on the check nodes. In this case we have
f(x) = 1 + xl and a(x) = lxl

1+xl . Figure 3 compares the
lower bound to the rate-distortion curve forl = 1, 2, and3.
For each case the achievable region is strictly bounded away
from the Shannon rate-distortion curve.
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Fig. 3. Bounds forL(x) = xl for l = 1, 2, and3. For l = 2 the 3 gray
dots correspond to the special casesR = 2

3
, R = 1

2
, andR = 2

5
respectively.

The corresponding lower bounds on the distortion areD( 2
3
) ≥ 0.0616 >

0.0614905 (rate-distortion bound),D( 1
2
) ≥ 0.115 > 0.11 (rate-distortion

bound), andD( 2
5
) ≥ 0.1924 > 0.1461 (rate-distortion bound).

Example 2 ((l, r)-Regular LDGM Codes): In this case we
have R = l/r and L(x) = xl. The same bound as in
Example 1 applies. The three special cases(l = 2, r = 3),
(l = 2, r = 4), and (l = 2, r = 5), which correspond to
R = 2

3 , R = 1
2 , and R = 2

5 respectively, are marked in
Figure 3 as gray dots.

Example 3 (r-Regular LDGM Codes of Rate R): Assume
that all check nodes have degreer and that the connections
are chosen uniformly at random with repetitions. For large
blocklengths this implies that the degree distribution on the

variable nodes converges to a Poisson distribution, i.e., we
have in the limit

L(x) =

∞
∑

i=1

Lix
i = e

r

R
(x−1).

Let us evaluate our bound for this generator degree distribu-
tion. Note that since the average degree of thecheck nodes is
fixed we have a different generator degree distributionL(x)
for each rateR. Figure 4 compares the resulting bound with
the Shannon rate-distortion function as well as the bound
of Theorem 1. The new bound is slightly tighter. But more
importantly, it applies toany LDGM code.
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Fig. 4. Lower bound on achievable(R, D) pairs forr-regular LDGM codes
with a Poisson generator degree distribution andr = 2, 4. The dashed curve
corresponds to the bound of Theorem 1 and the solid black curve represents
the bound of Theorem 2. The gray curve is the Shannon rate-distortion
tradeoff.

Proof of Theorem 2. From the statement in Theorem 2
you see that the bound consists of a portion of the curve
(D̂(x), R̂(x)) and a straight-line portion. The straight-line
portion is easily explained. Assume that all generator nodes
have degreel (for the general case replace all mentions of
l by the average degreeL′). Then the maximum number of
check nodes that can depend on the choice of generator nodes
is nl. Therefore, if the rateR is lower than 1

l
then at least

a fraction(1 − Rl) of the check nodes cannot be connected
to any generator node. For those nodes the average distortion
is 1

2 , whereas for the fractionRl of the check nodes which
are (potentially) connected to at least one generator node the
best achievable distortion is the same for any0 ≤ R ≤ 1

l
. It

suffices therefore to restrict our attention to rates in the range
[ 1
L′ , 1] and to prove that their(R, D) pairs are lower bounded

by the curve(D̂(x), R̂(x)).
As a second simplification note that although the bound is

valid for all blocklengthsm we only need to prove it for the
limit of infinite blocklengths. To see this, consider a particular
code of blocklengthm. Takek identical copies of this code
and consider thesek copies as one code of blocklengthkm.
Clearly, this large code has the same rateR, the same generator
degree distributionL(x), and the same distortionD as each
component code. By lettingk tend to infinity we can construct
an arbitrarily large code of the same characteristics and apply
the bound to this limit. Since our bound below is valid for



any sequence of codes whose blocklength tends to infinity the
claim follows.

Pick w ∈ N so thatDm + w ≤ m
2 . Then

|C(D)| = |
⋃

ŝ∈Ŝ

B(ŝ, Dm)|

(i)
≤

1

Am(w)

∑

ŝ∈Ŝ

|B(ŝ, Dm + w)|

(ii)
≤ 2

−mR log f(xω)
xω

ω
+om(1)

2mR2mh(D+w/m)

(iii)
= 2

m(−R log f(xω)

x
a(xω)
ω

+R+h(D+a(xω)R)+om(1))
.

To see (i) note that a “big” sphereB(ŝ, Dm + w), where
ŝ ∈ Ŝ, contains all “small” spheres of the formB(ŝ′, Dm),
where ŝ′ ∈ Ŝ so that d(ŝ, ŝ′) ≤ w. Let Am(w) be the
number of codewords of Hamming weight at mostw. Then,
by symmetry, each small sphereB(ŝ′, Dm) is in exactly
Am(w) big spheresB(ŝ, Dm+w). It follows that every point
in

⋃

ŝ∈Ŝ B(ŝ, Dm) is counted at leastAm(w) times in the
expression

∑

ŝ∈Ŝ |B(ŝ, Dm + w)|.
Consider now step (ii). We need a lower bound onAm(w).

Assume at first that all generator nodes have degreel. Assume
that exactlyg generator nodes are set to1 and that all other
nodes are set to0. There are

(

mR
g

)

ways of doing this. Now
note that for each such constellation the weight of the resulting
codeword is at mostw = gl. It follows that in the generator
regular case we have

Am(w) ≥

w/l
∑

g=0

(

mR

g

)

. (3)

We can rewrite (3) in the form

Am(w) ≥

w
∑

i=0

coef{(1 + xl)mR, xi}, (4)

where coef{(1 + xl)mR, xi} indicates the coefficient of the
polynomial (1 + xl)mR in front of the monomialxi. The
expression (4) stays valid also for irregular generator degree
distributionsL(x) if we replace(1 + xl)mR with f(x)mR,
wheref(x) =

∏

i(1+xi)Li as defined in the statement of the
theorem. This of course requires thatn is chosen in such a
way thatnLi ∈ N for all i.

DefineNm(w) =
∑w

i=0 coef{f(x)mR, xi}, so that (4) can
be restated asAm(w) ≥ Nm(w). Step (ii) now follows by
using the asymptotic expansion ofNm(w) stated as Theorem 1
[12], where we defineω = w/(mR) and wherexω is the
unique positive solution toa(x) = ω.

Finally, to see (iii) we replacew by mRa(xω) and thus we
get the claim. Since this bound is valid for anyw ∈ N so that
Dm + w ≤ m

2 we get the bound

lim
m→∞

1

m
log |C(D)| ≤ g(D, R),

where

g(D, R) = inf
x≥0

D+a(x)R≤ 1
2

−R log
f(x)

xa(x)
+ R + h(D + a(x)R).

Now note that as long asg(D, R) < 1, |C(D)| is exponen-
tially small compared to2m. Therefore, looking back at (2)
we see that in this case the average distortion converges to at
leastD in the limit m → ∞. We get the tightest bound by
looking for the condition for equality, i.e. by looking at the
equationg(R, D) = 1. If we take the derivative with respect
to x and set it to0 then we get the condition

x

1 + x
= D + Ra(x).

Recall thatD + a(x)R ≤ 1
2 , so that this translates tox ≤ 1.

This means thatx ≤ 1. ReplaceD + a(x)R in the entropy
term by x

1+x , set the resulting expression forg(R, x) equal to
1, and solve forR. This givesR as a function ofx and so we
also getD as a function ofx. We have

R(x) =
1 − h( x

1+x )

1 − log f(x)
xa(x)

, D(x) =
x

1 + x
− a(x)R(x).

A check shows thatx = 0 corresponds to(D, R) = (0, 1) and
that x = 1 corresponds to(D, R) = (L′−1

2L′ , 1
(L′)2 ). Further,

R and D are monotone functions ofx. Recall that we are
only interested in the bound forR ∈ [ 1

L′ , 1]. We get the
corresponding curve by lettingx take values in[0, x( 1

L′ )]. For
smaller values of the rate we get the aforementioned straight-
line bound.

Looking at the above expression forg(D, R) one can see
why this bound is strictly better than the rate-distortion curve
for D ∈ (0, 1

2 ). Assume at first that the generator degree
distribution is regular. Let the degree bel. In this case a quick
check shows that−R log f(x)

xa(x) is equal to−Rh(a(x)
l

). Since
a(0) = 0 we get the rate distortion bound if we setx = 0. The
claim follows by observing thata(x) is a continuous strictly
increasing function and thath(x) has an infinite derivative
at x = 0 while h(D + a(x)R) has a finite derivative at
x = 0. It follows that there exists a sufficiently smallx so
that Rh(a(x)

l
) is strictly larger thanh(D + a(x)R) − h(D)

and so thatD + a(x)R ≤ 1
2 . Hence,g(D, R) is strictly

decreasing as a function ofx at x = 0. This bounds the
achievable distortion strictly away from the rate-distortion
bound. The same argument applies to an irregular generator
degree distribution; the simplest way to see this is to replace
l by the maximum degree ofL(x).

IV. B OUND V IA TEST CHANNEL

Instead of using a combinatorial approach to bound|C(D)|
one can also use a probabilistic argument using the “test
channel” shown in Figure 5.

For the cases we have checked the resulting bound is
numerically identical to the bound of Theorem 2 (exclud-
ing the straight-line portion). We restrict our expositionto
the regular case. The generalization to the irregular case is
straightforward.

Theorem 3 (Bound Via Test Channel): Let Ŝ be an LDGM
code with blocklengthm, generator degree distribution
L(x) = xl, and rateR. Then for any pair(R, D), where
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Fig. 5. The generator wordsW are chosen uniformly at random fromW .
This generates a codeword̂S uniformly at random. Each component ofŜ is
then sent over a binary symmetric channel with transition probability D′.

D is the average distortion, we have

R ≥ sup
D≤D′≤ 1

2

1 − h(D) − KL(D‖D′)

1 − log2

(

1 + (D′)l

(1−D′)l

)

≥
1 − h(D)

1 − log2

(

1 + Dl

(1−D)l

) > 1 − h(D),

where KL(D‖D′) = D log2(D/D′) + (1 − D) log2((1 −
D)/(1 − D′)).

Proof. The same remark as in the proof of Theorem 2 applies:
although the bound is valid for any blocklength it suffices to
prove it for the limit of blocklengths tending to infinity. Also,
for simplicity we have not stated the bound in its strengthened
form which includes a straight-line portion. But the same
technique that was applied in the proof of Theorem 2 applies
also to the present case.

As remarked earlier, the idea of the proof is based on
bounding|C(D)| by using the “test channel.” More precisely,
chooseW uniformly at random from the set of all binary
sequences of lengthmR. Subsequently computêS via Ŝ =
WG, whereG is the generator matrix of the LDGM code.
Finally, let S = Ŝ + Z, whereZ has iid components with
P{Zi = 1} = D′.

Consider the set of sequencess ∈ C(D). For each suchs
we know that there exists an̂s ∈ Ŝ so thatd(s, ŝ) ≤ Dm. We
have

P{S = s | s ∈ C(D)}

=
∑

ŝ′∈Ŝ

P{S = s, Ŝ = ŝ′ | s ∈ C(D)}

=

m
∑

w=0

∑

ŝ′∈Ŝ:d(ŝ′,ŝ)=w

P{S = s, Ŝ = ŝ′ | s ∈ C(D)}

=
m

∑

w=0

Am(w)P{S = s, Ŝ = ŝ′ | s ∈ C(D), d(ŝ′, ŝ) = w}

=

m
∑

w=0

Am(w)2−mR
( D′

1 − D′

)d(s,ŝ′)

(1 − D′)m

≥

m
∑

w=0

Am(w)2−mR
( D′

1 − D′

)d(s,ŝ)+d(ŝ,ŝ′)

(1 − D′)m

d(ŝ′,ŝ)=w
=

m
∑

w=0

Am(w)2−mR
( D′

1 − D′

)d(s,ŝ)+w

(1 − D′)m

d(s,ŝ)≤Dm

≥

m
∑

w=0

Am(w)2−mR
( D′

1 − D′

)Dm+w

(1 − D′)m

= 2−mR−mh(D)−mKL(D‖D′)
m

∑

w=0

Am(w)
( D′

1 − D′

)w

,

where Am(w) denotes the number of codewords in̂S of
Hamming weightw. Due to the linearity of the code this is also
the number of codewords in̂S of Hamming distancew from
ŝ. Using summation by parts and settingc = D′/(1−D′) < 1,
we have

m
∑

w=0

Am(w)cw

= cm+12mR +
m

∑

w=0

(

w−1
∑

i=0

Am(i)
)

(cw − cw+1)

(4)

≥ cm+12mR +
m

∑

w=0

(

⌊(w−1)/l⌋
∑

i=0

(

mR

i

)

)

(cw − cw+1)

=

⌊m/l⌋
∑

w=0

(

mR

w

)

clw + cm+1
(

2mR −

⌊m/l⌋
∑

i=0

(

mR

i

)

)

≥

⌊m/l⌋
∑

w=0

(

mR

w

)

clw ≥
1

m
(1 + cl)mR.

The last step is valid as long asRcl

1+cl < 1
l
. In this case the

maximum term (which appears atRcl

1+cl m) is included in the
sum (which goes tom/l) and is thus greater than equal to the
average of all the terms, which is1m (1+cl)mR . This condition
is trivially fulfilled for Rl < 1. Assume for a moment that it
is also fulfilled forRl ≥ 1 and the optimum choice ofD′. It
then follows that

P{S = s | s ∈ C(D)} ≥
1

m
2−m(R+h(D)+KL(D‖D′)−R log2(1+cl)).

Since

1 =
∑

s∈F
m
2

P{S = s} ≥
∑

s∈C(D)

P{S = s}

≥ |C(D)|
1

m
2−m(R+h(D)+KL(D‖D′)−R log2(1+cl)),

we have|C(D)| ≤ m2m(R+h(D)+KL(D‖D′)−R log2(1+cl)). Pro-
ceeding as in (2), we have

E[d(S, g(f(S)))] ≥ D
(

1 − 2−m|C(D)|
)

≥ D
(

1 − m2m(R+h(D)+KL(D‖D′)−R log2(1+cl)−1)
)

.

We conclude that if for someD ≤ D′ ≤ 1
2 , R + h(D) +

KL(D‖D′)−R log2(1 + (D′)l

(1−D′)l )− 1 < 0 then the distortion

is at leastD. All this is still conditioned onRlcl

1+cl < 1 for



the optimum choice ofD′. For Rl < 1 we already checked
this. So assume thatRl ≥ 1. The above condition can then
equivalently be written asD′ < 1

1+(Rl−1)
1
l

. On the other

hand, taking the derivative of our final expression on the rate-
distortion function with respect toD′ we get the condition for
the maximum to beD′ = 1

1+(1+ Rl

D′−D
)
1
l

< 1

1+(Rl−1)
1
l

. We

see therefore that our assumptionRlcl

1+cl < 1 is also correct in
the caseRl ≥ 1.

Numerical experiments show that the present bound yields
for the regular case identical results as plotting the curve
corresponding tog(D, R) = 1, whereg(D, R) was defined
in the proof of Theorem 2. This can be interpreted as follows.
ChooseD′ equal to the optimal radius of the Hamming ball
in the proof of Theorem 2. Then the pointsŝ′ that contribute
most to the probability ofS = s must be those that have a
distance tôs of m(D′ − D).

V. D ISCUSSION ANDOPEN QUESTIONS

In the preceding sections we gave two bounds. Both of them
are based on the idea of counting the number of points that
are “covered” by spheres centered around the codewords of an
LDGM code. In the first case we derived a bound by double
counting this number. In the second case we derived a bound
by looking at a probabilistic model using the test channel.

An interesting open question is to determine the exact
relationship of the test channel model to the rate-distortion
problem. More precisely, it is tempting to conjecture that apair
(R, D) is only achievable ifH(S) = m in this test channel
model. This would require to show that only elements of the
typical set ofS under the test channel model are covered,
i.e., have code words within distanceD. For the test channel
model it is very easy to determine a criterion in the spirit of
Gallager’s original bound. We have

H(S) = H(W ) + H(S | W ) − H(W | S)

= mR + mh(D) −

mR
∑

g=1

H(Wg | S, W1, . . . , Wg−1)

(i)
≤ mR + mh(D) −

mR
∑

g=1

H(Wg | S, W∼g)

(ii)
= mR + mh(D) −

mR
∑

g=1

H(Wg | Sg, W∼g),

where Sg denotes the subset of the components of theS
vectors which are connected to the generatorg. Step (i) follows
since conditioning decreases entropy. Step (ii) follows since
knowing (Sg, W∼g), Wg is not dependent onS∼g. The term
H(Wg | Sg, W∼g) represents the EXIT function of a repetition
code when transmitting over BSC(D) channel. If one could
show thatH(S) = m is a necessary condition for achieving
average distortion ofD then a quick calculation shows that

the resulting bound would read

R ≥
1 − h(D)

1 −
∑

l

i=0

(

l

i

)

(1 − D)iDl−i log2

(

1 +
(

D
1−D

)2i−l
) .

This “bound” is similar in spirit to the original bound given
by Gallager, except that in Gallager’s original bound for
LDPC codes we have a term corresponding to the entropy
of single-parity check codes, whereas here we have terms that
correspond to the entropy of repetition codes; this would be
quite fitting given the duality of the problems.
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